
1

CHAPTER 1

Core Syntax Reference

JSP 1.1 Tomcat Beta

2 JSP Developer’s Guide • November 1999

HTML Comment

Generates a comment that is sent to the client.

JSP Syntax

<!-- comment [<%= expression %>] -->

Example 1

<!-- This file displays the user login screen -->

Displays in the page source:

<!-- This file displays the user login screen -->

Example 2

<!-- This page was loaded on
<%= (new java.util.Date()).toLocaleString() %> -->

Displays in the page source:

<!-- This page was loaded on January 1, 2000 -->

Description

An HTML comment in a JSP file is very similar to any other HTML comment. It

documents the file and can be viewed in the page source from your Web browser.

The one difference is that you can use an expression in an HTML comment in a JSP

file. The expression is dynamic and is evaluated when the page is loaded or reloaded

in the Web browser. You can use any expression that is valid in the page scripting

language; for more information, see Expression.

See Also

■ Hidden Comment

■ Expression

Chapter 1 Core Syntax Reference 3

Hidden Comment

Documents the JSP page but is not sent to the client.

JSP Syntax

<%-- comment --%>

Examples

<%@ page language="java" %>
<html>
<head><title>A Comment Test</title></head>
<body>
<h2>A Test of Comments</h2>
<%-- This comment will not be visible in the page source --%>
</body>
</html>

Description

A hidden comment marks text or lines that the JSP container should ignore. A

hidden comment is useful when you want to hide or “comment out” part of your

JSP page. The JSP container does not process anything within the <%-- and --%>
characters. A hidden comment is not sent to the client, either in the displayed JSP

page or the page source.

You can use any characters in the body of the comment except the closing --%>
combination. If you need to use --%> in your comment, you can escape it by typing

--%\> .

See Also

■ HTML Comment

4 JSP Developer’s Guide • November 1999

Declaration

Declares a variable or method valid in the scripting language used in the JSP page.

JSP Syntax

<%! declaration; [declaration;]+ ... %>

Examples

<%! int i = 0; %>
<%! int a, b, c; %>
<%! Circle a = new Circle(2.0); %>

Description

A declaration declares one or more variables or methods that you can use in JavaTM

code later in the JSP file. You must declare the variable or method before you use it in

the JSP file.

You can declare any number of variables or methods within one declaration element,

as long as you end each declaration with a semicolon. The declaration must be valid

in the Java programming language.

When you write a declaration in a JSP file, remember these rules:

■ You must end the declaration with a semicolon (the same rule as for a Scriptlet,

but the opposite of an Expression).

■ You can already use variables or methods that are declared in packages imported

by the <%@ page %>directive, without declaring them in a declaration element.

A declaration has translation unit scope, so it is valid in the JSP page and any of its

static include files. A static include file becomes part of the source of the JSP page

and is any file included with an <%@ include %> directive or a static file included

with a <jsp:include> element. The scope of a declaration does not include

dynamic files included with <jsp:include> .

See Also

■ Scriptlet

■ Expression

Chapter 1 Core Syntax Reference 5

Expression

Contains an expression valid in the scripting language used in the JSP page.

JSP Syntax

<%= expression %>

Examples

The map file has <%= map.size() %> entries.

Good guess, but nope. Try <%= numguess.getHint() %> .

Description

An expression element contains a scripting language expression that is evaluated,

converted to a String , and inserted where the expression appears in the JSP file.

Because the value of an expression is converted to a String , you can use an expres-

sion within a line of text, whether or not it is tagged with HTML, in a JSP file.

When you write expressions in a JSP file, remember these points:

■ You cannot use a semicolon to end an expression (however, the same expression

within a scriptlet requires the semicolon; see Scriptlet).

■ The expression element can contain any expression that is valid according to the

Java Language Specification.

You can sometimes use expressions as attribute values in JSP elements (see the

JavaServer PagesTM Syntax Card). An expression can be complex and composed of

more than one part or expression. The parts of an expression are evaluated in left-to-

right order.

See Also

■ Declaration

■ Scriptlet

6 JSP Developer’s Guide • November 1999

Scriptlet

Contains a code fragment valid in the page scripting language.

JSP Syntax

<% code fragment %>

Examples

<%
String name = null;
if (request.getParameter("name") == null) {

%>

<%@ include file="error.html" %>

<%
} else {
foo.setName(request.getParameter("name"));
if (foo.getName().equalsIgnoreCase("integra"))

name = "acura";
if (name.equalsIgnoreCase("acura")) {

%>

Description

A scriptlet can contain any number of language statements, variable or method

declarations, or expressions that are valid in the page scripting language.

Within a scriptlet, you can do any of the following:

■ Declare variables or methods to use later in the file (see also Declaration).

■ Write expressions valid in the page scripting language (see also Expression).

■ Use any of the implicit objects or any object declared with a <jsp:useBean>
element.

■ Write any other statement valid in the scripting language used in the JSP page (if

you use the Java programming language, the statements must conform to the Java
Language Specification).

Any text, HTML tags, or JSP elements you write must be outside the scriptlet.

Chapter 1 Core Syntax Reference 7

Scriptlets are executed at request time, when the JSP container processes the client

request. If the scriptlet produces output, the output is stored in the out object.

See Also

■ Declaration

■ Expression

8 JSP Developer’s Guide • November 1999

Include Directive

Includes a static file in a JSP file, parsing the file’s JSP elements.

JSP Syntax

<%@ include file=" relativeURL" %>

Examples

include.jsp:

<html>
<head><title>An Include Test</title></head>
<body bgcolor="white">

The current date and time are
<%@ include file="date.jsp" %>

</body>
</html>

date.jsp:

<%@ page import="java.util.*" %>
<%= (new java.util.Date()).toLocaleString() %>

Displays in the page:

The current date and time are
Aug 30, 1999 2:38:40

Description

The <%@ include %> directive inserts a file of text or code in a JSP file at

translation time, when the JSP file is compiled. When you use the <%@ include %>
directive, the include process is static. A static include means that the text of the

included file is added to the JSP file. The included file can be a JSP file, HTML file,

or text file. If the included file is a JSP file, its JSP elements are parsed and their

results included (along with any other text) in the JSP file.

Chapter 1 Core Syntax Reference 9

You can only use include to include static files. This means that the parsed result of

the included file is added to the JSP file where the <%@ include %> directive is

placed. Once the included file is parsed and included, processing resumes with the

next line of the calling JSP file.

The included file can be an HTML file, a JSP file, a text file, or a code file written in

the Java programming language. Be careful, though, that the included file does not

contain <html> , </html> , <body> , or </body> tags. Because the entire content of

the included file is added at that location in the JSP file, these tags would conflict

with the same tags in the calling JSP file, causing an error.

Some of the behaviors of the <%@ include %> directive depend on the particular

JSP container you are using, for example:

■ The included file might be open and available to all requests, or it might have

security restrictions.

■ The JSP page might be recompiled if the included file changes.

Attributes

■ file=" relativeURL"

The pathname to the included file, which is always a relative URL. Simply put, a

relative URL is just the path segment of an URL, without a protocol, port, or

domain name, like this:

"error.jsp"
"/templates/onlinestore.html"
"/beans/calendar.jsp"

If the relative URL starts with /, the path is relative to the JSP application’s

context, which is a javax.servlet.ServletContext object that is in turn

stored in the application object. If the relative URL starts with a directory or

file name, the path is relative to the JSP file.

Tip

■ If you are including a text file and do not want the text to be displayed in the JSP

page, place the text in a comment element.

See Also

■ <jsp:include>

■ <jsp:forward>

10 JSP Developer’s Guide • November 1999

Page Directive

Defines attributes that apply to an entire JSP page.

JSP Syntax

<%@ page
[language=" java "]
[extends=" package. class"]
[import="{ package. class | package. *}, ..."]
[session=" true |false"]
[buffer="none| 8kb | sizekb"]
[autoFlush=" true |false"]
[isThreadSafe=" true |false"]
[info=" text"]
[errorPage=" relativeURL"]
[contentType=" mimeType [;charset= characterSet]" |

"text/html ; charset=ISO-8859-1"]
[isErrorPage="true| false "]

%>

Examples

<%@ page import="java.util.*, java.lang.*" %>
<%@ page buffer="5kb" autoFlush="false" %>
<%@ page errorPage="error.jsp" %>

Description

The <%@ page %>directive applies to an entire JSP file and any of its static include
files, which together are called a translation unit. A static include file is a file whose

content becomes part of the calling JSP file. The <%@ page %>directive does not

apply to any dynamic include files; see <jsp:include> for more information.

You can use the <%@ page %>directive more than once in a translation unit, but

you can only use each attribute, except import , once. Because the import attribute

is similar to the import statement in the Java programming language, you can use a

<%@ page %>directive with import more than once in a JSP file or translation

unit.

Chapter 1 Core Syntax Reference 11

No matter where you position the <%@ page %>directive in a JSP file or included

files, it applies to the entire translation unit. However, it is often good programming

style to place it at the top of the JSP file.

Attributes

■ language=" java "

The scripting language used in scriptlets, declarations, and expressions in the JSP

file and any included files. In this release, the only allowed value is java .

■ extends=" package.class"

The fully qualified name of the superclass of the Java class file this JSP file will be

compiled to. Use this attribute cautiously, as it can limit the JSP container’s ability

to provide a specialized superclass that improves the quality of the compiled file.

■ import="{ package.class | package.*}, ..."

A comma-separated list of Java packages that the JSP file should import. The

packages (and their classes) are available to scriptlets, expressions, and

declarations within the JSP file. If you want to import more than one package,

you can specify a comma-separated list after import or you can use import
more than once in a JSP file.

The following packages are implicitly imported, so you don’t need to specify

them with the import attribute:

java.lang.*
javax.servlet.*
javax.servlet.jsp.*
javax.servlet.http.*

You must place the import attribute before the element that calls the imported

class.

■ session=" true |false"

Whether the client must join an HTTP session in order to use the JSP page. If the

value is true , the session object refers to the current or new session.

If the value is false , you cannot use the session object or a <jsp:useBean>
element with scope=session in the JSP file. Either of these usages would cause

a translation-time error.

The default value is true .

■ buffer="none| 8kb | sizekb"

The buffer size in kilobytes used by the out object to handle output sent from the

compiled JSP page to the client Web browser. The default value is 8kb . If you

specify a buffer size, the output is buffered with at least the size you specified.

12 JSP Developer’s Guide • November 1999

■ autoFlush=" true |false"

Whether the buffered output should be flushed automatically when the buffer is

full. If set to true (the default value), the buffer will be flushed. If set to false ,

an exception will be raised when the buffer overflows. You cannot set autoFlush
to false when buffer is set to none .

■ isThreadSafe=" true |false"

Whether thread safety is implemented in the JSP file. The default value is true ,

which means that the JSP container can send multiple, concurrent client requests

to the JSP page. You must write code in the JSP page to synchronize the multiple

client threads. If you use false , the JSP container sends client requests one at a

time to the JSP page.

■ info=" text"

A text string that is incorporated verbatim into the compiled JSP page. You can

later retrieve the string with the Servlet.getServletInfo() method.

■ errorPage=" relativeURL"

A pathname to a JSP file that this JSP file sends exceptions to. If the pathname

begins with a /, the path is relative to the JSP application’s document root

directory and is resolved by the Web server. If not, the pathname is relative to the

current JSP file.

■ isErrorPage="true| false "

Whether the JSP file displays an error page. If set to true , you can use the

exception object in the JSP file. If set to false (the default value), you cannot

use the exception object in the JSP file.

■ contentType=" mimeType [; charset= characterSet]" |
" text/html;charset=ISO-8859-1 "

The MIME type and character encoding the JSP file uses for the response it sends

to the client. You can use any MIME type or character set that are valid for the JSP

container. The default MIME type is text/html , and the default character set is

ISO-8859-1 .

Tip

■ If you need to include a long list of packages or classes in more than one JSP file,

you can create a separate JSP file with a <%@ page %>directive that contains the

import list and include that file in the main JSP file.

Chapter 1 Core Syntax Reference 13

Taglib Directive

Defines a tag library and prefix for the custom tags used in the JSP page.

JSP Syntax

<%@ taglib uri=" URIToTagLibrary" prefix=" tagPrefix" %>

Examples

<%@ taglib uri="http://www.jspcentral.com/tags" prefix="public" %>

<public:loop>
.
.
</public:loop>

Description

The <%@ taglib %> directive declares that the JSP file uses custom tags, names the

tag library that defines them, and specifies their tag prefix.

Here, the term custom tag refers to both tags and elements. Because JSP files can be

converted to XML, it is important to understand the relationship of tags and

elements. A tag is simply a short piece of markup that is part of a JSP element. A JSP

element is a unit of JSP syntax that has an XML equivalent with a start tag and an

end tag. An element can also contain other text, tags, or elements. For example, a

jsp:plugin element always has a <jsp:plugin> start tag and a </jsp:plugin>
end tag and may have a <jsp:params> element and a <jsp:fallback> element.

You must use a <%@ taglib %> directive before you use the custom tag in a JSP file.

You can use more than one <%@ taglib %> directive in a JSP file, but the prefix

defined in each must be unique.

The technique for creating custom tags is described in the JavaServer Pages
Specification for version 1.1.

14 JSP Developer’s Guide • November 1999

Attributes
■ uri=" URIToTagLibrary"

The Uniform Resource Identifier (URI) that uniquely names the set of custom tags

associated with the named tag prefix. A URI can be any of the following:

■ A Uniform Resource Locator (URL), as defined in RFC 2396, available at

http://www.hut.fi/u/jkorpela/rfc/2396/full.html

■ A Uniform Resource Name (URN), as defined in RFC 2396

■ An absolute or relative pathname

■ prefix=" tagPrefix"

The prefix that precedes the custom tag name, for example, public in

<public:loop> . Empty prefixes are illegal. If you are developing or using

custom tags, you cannot use the tag prefixes jsp , jspx , java , javax , servlet ,

sun , and sunw, as they are reserved by Sun Microsystems.

Chapter 1 Core Syntax Reference 15

<jsp:forward>

Forwards a client request to an HTML file, JSP file, or servlet for processing.

JSP Syntax

<jsp:forward page="{ relativeURL | <%= expression %>}" />

or

<jsp:forward page="{ relativeURL | <%= expression %>}" >
<jsp:param name=" parameterName"

value="{ parameterValue | <%= expression %>}" />+
</jsp:forward>

Examples

<jsp:forward page="/servlet/login" />

<jsp:forward page="/servlet/login">
<jsp:param name="username" value="jsmith" />

</jsp:forward>

Description

The <jsp:forward> element forwards the request object containing the client

request information from one JSP file to another file. The target file can be an HTML

file, another JSP file, or a servlet, as long as it is in the same application context as

the forwarding JSP file. The lines in the source JSP file after the <jsp:forward>
element are not processed.

You can pass parameter names and values to the target file by using a <jsp:param>
clause. An example of this would be passing the parameter name username (with

name="username") and the value scott (with value="scott") to a servlet login

file as part of the request. If you use <jsp:param> , the target file should be a

dynamic file that can handle the parameters.

Be careful when using <jsp:forward> with unbuffered output. If you have used

the <%@ page %>directive with buffer="none" to specify that the output of your

JSP file should not be buffered, and if the JSP file has any data in the out object,

using <jsp:forward> will cause an IllegalStateException .

16 JSP Developer’s Guide • November 1999

Attributes

■ page="{ relativeURL | <%= expression %>}"

A String or an expression representing the relative URL of the file to which you

are forwarding the request. The file can be another JSP file, a servlet, or any other

dynamic file that can handle a request object.

The relative URL looks like a path—it cannot contain a protocol name, port

number, or domain name. The URL can be absolute or relative to the current JSP

file. If it is absolute (beginning with a /), the path is resolved by your Web or

application server.

■ <jsp:param name=" parameterName"
value="{ parameterValue | <%= expression %>}" />+

Sends one or more name/value pairs as parameters to a dynamic file. The target

file should be dynamic, that is, a JSP file, servlet, or other file that can process the

data that is sent to it as parameters.

You can use more than one <jsp:param> clause if you need to send more than

one parameter to the target file. The name attribute specifies the parameter name

and takes a case-sensitive literal string as a value. The value attribute specifies

the parameter value and takes either a case-sensitive literal string or an

expression that is evaluated at request time.

See Also

■ Include Directive

■ <jsp:include>

■ Page Directive

Chapter 1 Core Syntax Reference 17

<jsp:getProperty>

Gets the value of a Bean property so that you can display it in a result page.

JSP Syntax

<jsp:getProperty name=" beanInstanceName" property=" propertyName" />

Examples

<jsp:useBean id="calendar" scope="page" class="employee.Calendar" />
<h2>
Calendar of <jsp:getProperty name="calendar" property="username" />
</h2>

Description

The <jsp:getProperty> element gets a Bean property value using the property’s

getter methods and displays the property value in a JSP page. You must create or

locate a Bean with <jsp:useBean> before you use <jsp:getProperty> .

The <jsp:getProperty> element has a few limitations you should be aware of:

■ You cannot use <jsp:getProperty> to retrieve the values of an indexed

property.

■ You can use <jsp:getProperty> with JavaBeans components, but not with

enterprise beans. As alternatives, you can write a JSP page that retrieves values

from a Bean that in turn retrieves values from an enterprise bean, or you can

write a custom tag that retrieves values from an enterprise bean directly.

Attributes

■ name=" beanInstanceName"

The name of an object (usually an instance of a Bean) as declared in a

<jsp:useBean> element.

18 JSP Developer’s Guide • November 1999

■ property=" propertyName"

The name of the Bean property whose value you want to display. The property is

declared as a variable in a Bean and must have a corresponding getter method

(for more information on declaring variables and writing getter methods in Beans,

see the JavaBeans API Specification).

Tips

■ In Sun’s JSP reference implementation, if you use <jsp:getProperty> to

retrieve a property value that is null, a NullPointerException is thrown.

However, if you use a scriptlet or expression to retrieve the value, the string null
is displayed in the browser; see Scriptlet or Expression for more information.

See Also

■ <jsp:useBean>

■ <jsp:setProperty>

Chapter 1 Core Syntax Reference 19

<jsp:include>

Includes a static file or sends a request to a dynamic file.

JSP Syntax

<jsp:include page="{ relativeURL | <%= expression %>}" flush="true" />

or

<jsp:include page="{ relativeURL | <%= expression %>}" flush="true" >
<jsp:param name=" parameterName"

value= "{ parameterValue | <%= expression %>}" />+
</jsp:include>

Examples

<jsp:include page="scripts/login.jsp" />
<jsp:include page="copyright.html" />
<jsp:include page="/index.html" />

<jsp:include page="scripts/login.jsp">
<jsp:param name="username" value="jsmith" />

</jsp:include>

Description

The <jsp:include> element allows you to include either a static or dynamic file in

a JSP file. The results of including static and dynamic files are quite different. If the

file is static, its content is included in the calling JSP file. If the file is dynamic, it acts

on a request and sends back a result that is included in the JSP page. When the

include action is finished, the JSP container continues processing the remainder of

the JSP file.

You cannot always determine from a pathname if a file is static or dynamic. For

example, http://server:8080/index.html might map to a dynamic servlet through a Web

server alias. The <jsp:include> element handles both types of files, so it is

convenient to use when you don’t know whether the file is static or dynamic.

If the included file is dynamic, you can use a <jsp:param> clause to pass the name

and value of a parameter to the dynamic file. As an example, you could pass the

string username and a user’s name to a login form that is coded in a JSP file.

20 JSP Developer’s Guide • November 1999

Attributes

■ page= " { relativeURL | <%= expression %>}"

The relative URL that locates the file to be included, or an expression that

evaluates to a String equivalent to the relative URL.

The relative URL looks like a pathname—it cannot contain a protocol name, port

number, or domain name. The URL can be absolute or relative to the current JSP

file. If it is absolute (beginning with a /), the pathname is resolved by your Web

or application server.

■ flush="true"

You must include flush="true" , as it is not a default value. You cannot use a

value of false . Use the flush attribute exactly as it is given here.

■ <jsp:param name=" parameterName"
value="{ parameterValue | <%= expression %>}" />+

The <jsp:param> clause allows you to pass one or more name/value pairs as

parameters to an included file. The included file should be dynamic, that is, a JSP

file, servlet, or other file that can process the parameter.

You can use more than one <jsp:param> clause if you want to send more than

one parameter to the included file. The name attribute specifies the parameter

name and takes a case-sensitive literal string. The value attribute specifies the

parameter value and takes either a case-sensitive literal string or an expression

that is evaluated at request time.

See Also

■ Include Directive

■ <jsp:forward>

Chapter 1 Core Syntax Reference 21

<jsp:plugin>

Executes an applet or Bean and, if necessary, downloads a Java plug-in to execute it.

JSP Syntax

<jsp:plugin
type="bean|applet"
code=" classFileName"
codebase=" classFileDirectoryName"
[name=" instanceName"]
[archive=" URIToArchive, ..."]
[align=" bottom |top|middle|left|right"]
[height=" displayPixels"]
[width=" displayPixels"]
[hspace=" leftRightPixels"]
[vspace=" topBottomPixels"]
[jreversion=" JREVersionNumber | 1.1 "]
[nspluginurl=" URLToPlugin"]
[iepluginurl=" URLToPlugin"] >

[<jsp:params>
[<jsp:param name=" parameterName"

value="{ parameterValue | <%= expression %>}" />]+
</jsp:params>]

[<jsp:fallback> text message for user </jsp:fallback>]

</jsp:plugin>

Examples

<jsp:plugin type=applet code="Molecule.class" codebase="/html">
<jsp:params>

<jsp:param name="molecule" value="molecules/benzene.mol" />
</jsp:params>
<jsp:fallback>

<p>Unable to load applet</p>
</jsp:fallback>

</jsp:plugin>

22 JSP Developer’s Guide • November 1999

Description

The <jsp:plugin> element plays or dispays an object (typically an applet or Bean)

in the client Web browser, using a Java plug-in that is built in to the browser or

downloaded from a specified URL.

When the JSP file is translated and compiled and Java and sends back an HTML

response to the client, the <jsp:plugin> element is replaced by either an

<object> or <embed> element, according to the browser version. The <object>
element is defined in HTML 4.0 and <embed> in HTML 3.2.

In general, the attributes to the <jsp:plugin> element specify whether the object is

a Bean or an applet, locate the code that will be run, position the object in the

browser window, specify an URL from which to download the plug-in software, and

pass parameter names and values to the object. The attributes are described in detail

in the next section.

Attributes
■ type="bean|applet"

The type of object the plug-in will execute. You must specify either bean or

applet , as this attribute has no default value.

■ code=" classFileName"

The name of the Java class file the plug-in will execute. You must include the .
class extension in the name. The file you specify should be in the directory

named in the codebase attribute.

■ codebase=" classFileDirectoryName"

The directory (or path to the directory) that contains the Java class file the plug-in

will execute. If you do not supply a value, the path of the JSP file that calls

<jsp:plugin> is used.

■ name=" instanceName"

A name for the instance of the Bean or applet, which makes it possible for applets

or Beans called by the same JSP file to communicate with each other.

■ archive=" URIToArchive, ..."

A comma-separated list of pathnames that locate archive files that will be

preloaded with a class loader located in the directory named in codebase . The

archive files are loaded securely, often over a network, and typically improve the

applet’s performance.

Chapter 1 Core Syntax Reference 23

■ align=" bottom |top|middle|left|right"

The position of the image, object, or applet. The position descriptions listed below

use the term text line to mean the line in the viewable JSP page that corresponds

to the line in the JSP file where the <jsp:plugin> element appears. The allowed

values for align are listed below:

bottom Aligns the bottom of the image with the baseline of the text line.

top Aligns the top of the image with the top of the text line.

middle Aligns the vertical center of the image with the baseline of the text

line.

left Floats the image to the left margin and flows text along the image’s

right side.

right Floats the image to the right margin and flows text along the image’s

left side.

■ height=" displayPixels"
width=" displayPixels"

The initial height and width, in pixels, of the image the applet or Bean displays,

not counting any windows or dialog boxes the applet or Bean brings up.

■ hspace=" leftRightPixels"
vspace=" topBottomPixels"

The amount of space, in pixels, to the left and right (or top and bottom) of the

image the applet or Bean displays. The value must be a nonzero number. Note

that hspace creates space to both the left and right and vspace creates space to

both the top and bottom.

■ jreversion=" JREVersionNumber| 1.1 "

The version of the Java Runtime Environment (JRE) the applet or Bean requires.

The default value is 1.1.

■ nspluginurl=" URLToPlugin"

The URL where the user can download the JRE plug-in for Netscape Navigator.

The value is a full URL, with a protocol name, optional port number, and domain

name.

■ ie pluginurl=" URLToPlugin"

The URL where the user can download the JRE plug-in for Internet Explorer. The

value is a full URL, with a protocol name, optional port number, and domain

name.

24 JSP Developer’s Guide • November 1999

■ <jsp:params>
[<jsp:param name=" parameterName"

value= " { parameterValue | <%= expression %>}" />]+
</jsp:params>

The parameters and values that you want to pass to the applet or Bean. To specify

more than one parameter value, you can use more than one <jsp:param>
element within the <jsp:params> element.

The name attribute specifies the parameter name and takes a case-sensitive literal

string. The value attribute specifies the parameter value and takes either a case-

sensitive literal string or an expression that is evaluated at runtime.

If the dynamic file you are passing the parameter to is an applet, it reads the

parameter with the java.applet.Applet.getParameter method.

■ <jsp:fallback> text message for user </jsp:fallback>

A text message to display for the user if the plug-in cannot be started. If the plug-

in starts but the applet or Bean does not, the plug-in usually displays a popup

window explaining the error to the user.

See Also

■ The official HTML 3.2 specification: http://www.w3.org/TR/REC-html32.html

■ The official HTML 4.0 specification: http://www.w3.org/TR/REC-html40/

Chapter 1 Core Syntax Reference 25

<jsp:setProperty>

Sets a property value or values in a Bean.

JSP Syntax

<jsp:setProperty
name=" beanInstanceName"

{ property="*" |
property=" propertyName" [param=" parameterName"] |
property=" propertyName" value="{ string | <%= expression %>}"

}
/>

Examples

<jsp:setProperty name="mybean" property="*" />
<jsp:setProperty name="mybean" property="username" />
<jsp:setProperty name="mybean" property="username" value="Steve" />

Description

The <jsp:setProperty> element sets the value of one or more properties in a

Bean, using the Bean’s setter methods. You must declare the Bean with

<jsp:useBean> before you set a property value with <jsp:setProperty> .

Because <jsp:useBean> and <jsp:setProperty> work together, the Bean

instance names they use must match (that is, the value of name in

<jsp:setProperty> and the value of id in <jsp:useBean> must be the same).

You can use <jsp:setProperty> to set property values in several ways:

■ By passing all of the values the user enters (stored as parameters in the request
object) to matching properties in the Bean

■ By passing a specific value the user enters to a specific property in the Bean

■ By setting a Bean property to a value you specify as either a String or an

expression that is evaluated at runtime

26 JSP Developer’s Guide • November 1999

Each method of setting property values has its own syntax, as described in the next

section.

Attributes and Usage

■ name=" beanInstanceName"

The name of an instance of a Bean that has already been created or located with a

<jsp:useBean> element. The value of name must match the value of id in

<jsp:useBean> . The <jsp:useBean> element must appear before

<jsp:seProperty> in the JSP file.

■ property="*"

Stores all of the values the user enters in the viewable JSP page (called request
parameters) in matching Bean properties. The names of the properties in the Bean

must match the names of the request parameters, which are usually the elements

of an HTML form. A Bean property is usually defined by a variable declaration

with matching getter and setter methods (for more information, see the JavaBeans

API Specification available at http://java.sun.com/beans).

The values of the request parameters sent from the client to the server are always

of type String . The String values are converted to other data types so they can

be stored in Bean properties. The allowed Bean property types and their

conversion methods are shown in TABLE 1-1.

You can also use <jsp:setProperty> to set the value of an indexed property in

a Bean. The indexed property must be an array of one of the data types shown in

TABLE 1-1. The array elements are converted using the conversion methods shown

in the table.

TABLE 1-1 How <jsp:setProperty> Converts Strings to Other Values

Property Type String Is Converted Using

boolean or Boolean java.lang.Boolean.valueOf(String)

byte or Byte java.lang.Byte.valueOf(String)

char or Character java.lang.Character.valueOf(String)

double or Double java.lang.Double.valueOf(String)

integer or Integer java.lang.Integer.valueOf(String)

float or Float java.lang.Float.valueOf(String)

long or Long java.lang.Long.valueOf(String)

Chapter 1 Core Syntax Reference 27

If a request parameter has an empty or null value, the corresponding Bean

property is not set. Likewise, if the Bean has a property that does not have a

matching request parameter, the property value is not set.

■ property=" propertyName" [param=" parameterName"]

Sets one Bean property to the value of one request parameter. In the syntax,

property specifies the name of the Bean property and param specifies the name

of the request parameter by which data is being sent from the client to the server.

If the Bean property and the request parameter have different names, you must

specify both property and param . If they have the same name, you can specify

property and omit param .

If a parameter has an empty or null value, the corresponding Bean property is not

set.

■ property=" propertyName" value= " { string | <%= expression %>}"

Sets one Bean property to a specific value. The value can be a String or an

expression that is evaluated at runtime. If the value is a String , it is converted to

the Bean property’s data type according to the conversion rules shown above in

TABLE 1-1. If it is an expression, its value must have a data type that matches the

the data type of the value of the expression must match the data type of the Bean

property.

If the parameter has an empty or null value, the corresponding Bean property is

not set. You cannot use both the param and value attributes in a

<jsp:setProperty> element.

See Also

■ <jsp:useBean>

■ <jsp:getProperty>

Tips

■ When you use property="*" , the Bean properties are not necessarily set in the

order in which they appear in the HTML form or the Bean.

In Sun’s JSP 1.0 or JSP 1.1 Tomcat, the Bean properties are set in the order in

which they are presented to the JSP container by the Beans introspector. If the

order in which the properties are set is important to how your Bean works, use

the syntax form property=" propertyName" [param=" parameterName"] . Better

yet, rewrite your Bean so that the order of setting properties is not important.

28 JSP Developer’s Guide • November 1999

<jsp:useBean>

Locates or instantiates a Bean with a specific name and scope.

JSP Syntax

<jsp:useBean
id=" beanInstanceName"
scope=" page |request|session|application"

{ class=" package.class" |
type=" package.class" |
class=" package.class" type=" package.class" |
beanName="{ package.class | <%= expression %>}" type=" package.class"

}
{ /> |

> other elements
</jsp:useBean>

}

Examples

<jsp:useBean id="cart" scope="session" class="session.Carts" />
<jsp:setProperty name="cart" property="*" />

<jsp:useBean id="checking" scope="session" class="bank.Checking" >
<jsp:setProperty name="checking" property="balance" value="0.0" />
</jsp:useBean>

Description

The <jsp:useBean> element locates or instantiates a JavaBeans component.

<jsp:useBean> first attempts to locate an instance of the Bean. If the Bean does not

exist, <jsp:useBean> instantiates it from a class or serialized template.

To locate or instantiate the Bean, <jsp:useBean> takes the following steps, in this

order:

1. Attempts to locate a Bean with the scope and name you specify.

2. Defines an object reference variable with the name you specify.

3. If it finds the Bean, stores a reference to it in the variable. If you specified type ,

gives the Bean that type.

Chapter 1 Core Syntax Reference 29

4. If it does not find the Bean, instantiates it from the class you specify, storing a

reference to it in the new variable. If the class name represents a serialized

template, the Bean is instantiated by java.beans.Beans.instantiate .

5. If <jsp:useBean> has instantiated (rather than located) the Bean, and if it has

body tags or elements (between <jsp:useBean> and </jsp:useBean>),

executes the body tags.

The body of a <jsp:useBean> element often contains a <jsp:setProperty>
element that sets property values in the Bean. As described in Step 5, the body tags

are only processed if <jsp:useBean> instantiates the Bean. If the Bean already

exists and <jsp:useBean> locates it, the body tags have no effect.

In this release, you can use a <jsp:useBean> element to locate or instantiate a

Bean, but not an enterprise bean. To create enterprise beans, you can write a

<jsp:useBean> element that calls a Bean that in turn calls the enterprise bean, or

you can write a custom tag that calls an enterprise bean directly.

Attributes and Usage

■ id=" beanInstanceName"

A variable that identifies the Bean in the scope you specify. You can use the

variable name in expressions or scriptlets in the JSP file.

The name is case sensitive and must conform to the naming conventions of the

scripting language used in the JSP page. If you use the Java programming

language, the conventions in the Java Language Specification. If the Bean has

already been created by another <jsp:useBean> element, the value of id must

match the value of id used in the original <jsp:useBean> element.

■ scope=" page |request|session|application"

The scope in which the Bean exists and the variable named in id is available. The

default value is page . The meanings of the different scopes are shown below:

page You can use the Bean within the JSP page with the

<jsp:useBean> element or any of the page’s static include

files, until the page sends a response back to the client or

forwards a request to another file.

request You can use the Bean from any JSP page processing the same

request, until a JSP page sends a response to the client or

forwards the request to another file. You can use the request
object to access the Bean, for example, request.
getAttribute(beanInstanceName) .

30 JSP Developer’s Guide • November 1999

session You can use the Bean from any JSP page in the same session as

the JSP page that created the Bean. The Bean exists across the

entire session, and any page that participates in the session can

use it. The page in which you create the Bean must have a

<%@ page %>directive with session="true" .

application You can use the Bean from any JSP page in the same application

as the JSP page that created the Bean. The Bean exists across an

entire JSP application, and any page in the application can use

the Bean.

■ class=" package.class"

Instantiates a Bean from a class, using the new keyword and the class constructor.

The class must not be abstract and must have a public, no-argument constructor.

The package and class name are case sensitive.

■ type=" package.class"

If the Bean already exists in the scope, gives the Bean a data type other than the

class from which it was instantiated. The value of type must be a superclass of

class or an interface implemented by class .

If you use type without class or beanName, no Bean is instantiated. The

package and class name are case sensitive.

■ class=" package.class" type=" package.class"

Instantiates a Bean from the class named in class and assigns the Bean the data

type you specify in type . The value of type can be the same as class , a

superclass of class , or an interface implemented by class .

The class you specify in class must not be abstract and must have a public, no-

argument constructor. The package and class names you use with both class
and type are case sensitive.

■ beanName="{ package.class | <%= expression %>}" type=" package.class"

Instantiates a Bean from a class, a serialized template, or an expression that

evaluates to a class or serialized template. When you use beanName, the Bean is

instantiated by the java.beans.Beans.instantiate method. The Beans.
instantiate method checks whether the package and class you specify

represents a class or a serialized template. If they represent a serialized template,

Beans.instantiate reads the serialized form (which has a name like package.
class.ser) using a class loader. For more information, see the JavaBeans API
Specification.

The value of type can be the same as beanName, a superclass of beanName, or an

interface implemented by beanName. The package and class names you use with

both beanName and type are case sensitive.

Chapter 1 Core Syntax Reference 31

See Also

■ <jsp:setProperty>

■ <jsp:getProperty>

■ Javadoc API reference for java.beans.Beans

■ JavaBeans API Specification

32 JSP Developer’s Guide • November 1999

	Core Syntax Reference
	HTML Comment
	JSP Syntax
	Example 1
	Example 2
	Description
	See Also

	Hidden Comment
	JSP Syntax
	Examples
	Description
	See Also

	Declaration
	JSP Syntax
	Examples
	Description
	See Also

	Expression
	JSP Syntax
	Examples
	Description
	See Also

	Scriptlet
	JSP Syntax
	Examples
	Description
	See Also

	Include Directive
	JSP Syntax
	Examples
	Description
	Attributes
	Tip
	See Also

	Page Directive
	JSP Syntax
	Examples
	Description
	Attributes
	Tip

	Taglib Directive
	JSP Syntax
	Examples
	Description
	Attributes

	<jsp:forward>
	JSP Syntax
	Examples
	Description
	Attributes
	See Also

	<jsp:getProperty>
	JSP Syntax
	Examples
	Description
	Attributes
	Tips
	See Also

	<jsp:include>
	JSP Syntax
	Examples
	Description
	Attributes
	See Also

	<jsp:plugin>
	JSP Syntax
	Examples
	Description
	Attributes
	See Also

	<jsp:setProperty>
	JSP Syntax
	Examples
	Description
	Attributes and Usage
	See Also
	Tips

	<jsp:useBean>
	JSP Syntax
	Examples
	Description
	Attributes and Usage
	See Also

